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• Human activities affect the light that
submerged vegetation needs to survive.

• Machine learning (ML) can estimate
light and inform ecological manage-
ment.

• Our ML-derived submerged vegetation
light model (SVLM) is >99% accurate.

• The SVLM can be used to adaptively
manage submerged habitats.
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Submerged aquatic vegetation (SAV; e.g. seagrasses, macroalgae), forms key habitats in shallow coastal systems
that provide a plethora of ecosystem services, including coastal protection, climate mitigation and supporting
fisheries production. Light limitation is a critical factor influencing the growth and survival of SAV, thus it is im-
portant to understand howmuch light SAV needs, and receives, to effectively assess the risk that light limitation
poses. Lightmonitoring is commonly used to inform environmental decisionmaking tominimise loss of SAVhab-
itat, but the temporal and spatial extent of monitoring is often limited by cost and logistical difficulties. An ability
to remotely estimate light across different locations can therefore improve the conservation andmanagement of
SAV habitats. Here we combine an extensive monitoring program with publicly available data and machine
learning to develop amodel that estimates the light reaching submerged seagrasses in a shallow subtropical em-
bayment in southernQueensland, Australia. Ourmodel accurately predicts the intensity of photosynthetically ac-
tive radiation (PAR) reaching the canopy of SAV from entirely remotely available data. The best performing
model predicted light intensity with >99% at the management relevant daily, and 14-day rolling average time
resolutions. Thismodel enablesmonitoring of light available to SAVwithout an ongoing need for in-water instru-
ments, minimising cost and risk to personnel, and improving assessment speed. The technique can be applied to
SAV management plans in shallow waters throughout the world, where suitable remote public data is available.
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1. Introduction

Coastal habitats characterised by the presence of submerged aquatic
vegetation (SAV), such as seagrass andmacroalgae, play important roles
in supporting biodiversity, and providing ecosystem services including
carbon storage, fisheries, and coastal protection (Scott et al., 2018;
Brown et al., 2019; Sievers et al., 2019). But coastal SAV ecosystems
are under threat, and while some areas are showing signs of recovery
(de los Santos et al., 2019), SAV ecosystems are declining in extent at
a global scale, largely as a result of human-driven disturbances (Orth
et al., 2006;Waycott et al., 2009). Globally, human activities and natural
phenomena can affect habitat suitability for SAV, especially through
changes to the light environment by increasing turbidity (Anthony
et al., 2004; Lawson et al., 2007). Land-use changes can increase erosion,
nutrients, and contaminants in waterways and changing climactic con-
ditions can increase wind, rain and storm events. As well as other ef-
fects, each of these can affect SAV health by increasing turbidity which
reduces light penetration through the water column, potentially caus-
ing light-stress (Lawson et al., 2007).

To help reverse losses and inform management of these habitats,
there is need to monitor and manage important environmental param-
eters linked with SAV persistence. The dynamic and complex nature of
environmental conditions in SAV ecosystemsmakemonitoring difficult
and sometimes dangerous, leading to high time and monetary cost in-
volved in research andmanagement, and limited time-series data avail-
able for long-term comparisons (Kilminster et al., 2015; Sievers et al.,
2020). Thus, effective management of these ecosystems would benefit
from a low-cost method to rapidly assess critical factors that cause
changes in habitat suitability.

Light, or more specifically, photosynthetically active radiation (PAR)
reaching the canopy of SAV, affects their growth and survival (Lee et al.,
2007; Collier et al., 2016b). Light stress can occur naturally, but the fre-
quency and intensity of light stress events can also increase due to
human activities (Garrad and Hey, 1987; Ganju et al., 2014). In complex
coastalwaters,weather events (e.g. wind, rain, large storms) can reduce
light levels for relatively long periods (Lawson et al., 2007), potentially
affecting the resilience of submerged vegetation to additional stress
(Yaakub et al., 2014). Assessing the light reaching SAV has traditionally
relied on costly in-water measurements that provide observations lim-
ited to specific places in space and time (Collier et al., 2012a; Chartrand
et al., 2016). Further, somehistorical assessments have relied on inaccu-
rate proxies (e.g. secchi disks), leaving a paucity of existing comparable
time-series data for long-term assessments linking pressures to ecosys-
tem health. Modern in-water techniques (e.g. light loggers) to quantify
light intensity have improved accuracy and ability to understand
change over time, but necessary repeat visits to locations for instrument
maintenance also requires considerable effort. This limits the ability for
managers to employ adaptive strategies that allow rapid response to
changing conditions and adequate spatial coverage to determine poten-
tial impacts. Remote sensing technologies have improved capacity for
rapid assessments across large spatial scales by allowing collection of
time-series data for many variables (Álvarez-Romero et al., 2013;
Roelfsema et al., 2014; Magno-Canto et al., 2019; Coffer et al., 2020;
Zoffoli et al., 2020). However, applying remote techniques for SAVman-
agement can be hampered due to the numerous drivers that impact
coastal water clarity, the shallow depths where SAV typically occurs,
and limitations in the techniques to adequately account for these.

Coastal water quality and light reaching SAVs can be affected by a
plethora of natural and human processes (e.g. Lawson et al., 2007). For
example, periods of high rainfall, strong winds and wave energy often
increase suspended materials, reduce light penetration and potentially
cause short-term light-stress to SAV. Conversely, calm waters during
sunny periods may offer respite to SAV, allowing photosynthetic pro-
cesses to rebuild energy stores, increase growth rates and enable sur-
vival (Anthony et al., 2004; O'Brien et al., 2018). The complex
interactions between these processes result in highly variable light
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intensities to which SAV have adapted, to some extent, by displaying
morphological and physiological plasticity (Maxwell et al., 2014). How-
ever, prolonged periods of time below light requirements can affect the
growth and survival of SAV (Wu et al., 2018). The frequency, intensity,
or duration of excursions below light requirements can be exacerbated
by human activities (Collier et al., 2012b; McMahon et al., 2013; York
et al., 2015; O'Brien et al., 2018), with chronic low-light reducing resil-
ience to further light-stress (Yaakub et al., 2014). Thus, any additional
stress beyond natural cycles (e.g. from boat generated wake, sandman-
agement) can surpass tolerance thresholds and trigger reductions in
growth and survival. Having a capacity to remotely, and accurately, es-
timate light intensitywouldmean that the effect of various processes af-
fecting light can bemeasured, risk to habitat identified, and processes or
activities influencing light managed.

Consideration of the natural and human influences on water quality
are key components of water quality and SAV management (Dixon,
1999; Erftemeijer and Shuail, 2012; Chartrand et al., 2018). Models
that account for these can be used to predict habitat suitability (Baird
et al., 2016), to identify water quality constituents (Fernandes et al.,
2018; Fernandes et al., 2019), or activities (Chartrand et al., 2016) to
be targeted for management. Water quality models can provide a
wide spatial coverage, and can be used to hind-cast, enabling compari-
sons of current and historical habitat suitability.

Here, we aim to use remotely available environmental data to de-
velop a machine learning model that accurately predicts light reaching
SAV at management-relevant spatiotemporal resolutions in a sub-
tropical estuary. We further aim to test the sensitivity of predictions to
variations in training data quantity and spatiotemporal coverage. Hav-
ing access to an accurate modelling solution will allow researchers
and managers to minimise cost, effort, and risk (to both humans and
equipment) associated with monitoring and managing SAV. Modelled
approaches also provide the ability to hindcast conditions to support as-
sessments of past environmental change (e.g. Kerimoglu et al., 2018).

2. Methods

We undertook an extensive monitoring program to measure ‘natu-
ral’ light intensities and understand the influence of natural and
human influences on light in our case-study location – the Gold Coast
Broadwater in southern Queensland, Australia (Fig. 1). The Gold Coast
Broadwater is the southern-most section of Moreton Bay, a shallow
sub-tropical embayment in eastern Australia. It is surrounded by
urban area that is home to more than 600,000 people (City of Gold
Coast, 2019), agricultural lands, and extensive made-made canal sys-
tems. The waterway experiences high boating traffic, especially during
holiday periods (Leon andWarnken, 2008). Largely protected from oce-
anic swells, the Broadwater is home to eight seagrass species, which
cover approximately 1200 ha (Cuttriss et al., 2013; Connolly et al.,
2016). Zostera muelleri is the most prevalent species (Sievers et al.,
2020), growing from the intertidal zone to approximately 3 m depth
(Connolly et al., 2016). Locally relevant light thresholds were recently
established for subtidal Zostera muelleri in the Gold Coast Broadwater
(Pearson et al., 2020). In this region,managers are advised to implement
sand management mitigation measures if activities caused light inten-
sity to fall below a two-week rolling average of 4.5 mol/m2/d
(Connolly et al., 2016; Pearson et al., 2020). Thus, we include this
threshold and time-period as one of 11 levels inmodel accuracy assess-
ments (described in data processing & analysis section).

2.1. Light measurements in seagrass meadows

We measured light intensity (in 1-minute intervals) and water
depth (4–16 measurements/s, averaged to 1-minute intervals for anal-
yses) within seagrass meadows over 13 months (Sep 2018 to Oct
2019). We were interested in biologically active wavelengths, and
thus installed Odyssey photosynthetically active radiation (PAR) light



Fig. 1. PAR logger deployment locations in the Gold Coast Broadwater. Circle size and colour are categorical representations of duration of in-water measurements (size) and mean site-
error (colour; asmean difference between observed and predicted values by the bestmodel (designated K1). Seagrass layer fromCuttriss et al. (2013). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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loggers in concert with Ruskin RBR depth loggers in 31 locations for pe-
riods ranging from hours to several weeks (Figs. 1; S2.2). Automatic
wiper units (Zebra-tech models) were installed to maintain clean sen-
sors throughout the monitoring period. The maximum depth observed
at any site was 3.43 m, and the average maximum depth across all de-
ployments was 1.46 m ± 0.17 m (mean ± SE). At any point in time,
up to 6 units were deployed simultaneously between Sep 2018 and
Oct 2019. Data were collected across the full suite of environmental
conditions experienced in the Broadwater: during the dry season and
periods of peak summer rainfall (including during exposure to an ex-
tropical cyclone in February 2019); across quiet weekdays, weekends
and busy holiday periods (e.g. Christmas, Australia Day and Easter)
when boating traffic is expected to be much higher than during regular
weekdays; throughout all tidal cycles (spring and neap tides); under
calm and strong winds, and; with a variety of day-lengths through
Spring, Summer,Winter andAutumn. Thus, light data collected is repre-
sentative of a variety of environmental and boat traffic conditions in the
survey area.
3

2.2. Data processing & analyses

We used the in-water observation data in concert with publicly
available data to develop a Submerged Vegetation Light Model
(SVLM) to estimate light intensity at the SAV canopy. Light was the re-
sponse variable and 11 remotely available or calculable variables were
predictors (Table 1). We assigned each 1-minute light measurement a
value for each of 11 predictor variables (Table 1) that are known locally
and/or globally to influence light strength or penetration through the
water column (Maxwell et al., 2017; O'Brien et al., 2018; Wu et al.,
2018). Predictor variables, their data source, and the temporal resolu-
tion used are listed in Table 1, with detailed descriptions of each pro-
vided in S1. Solar dose was re-calculated to 1-minute resolution from
a daily solar exposure value (described in detail in S1). For all other pre-
dictors, when the temporal resolutions did not align, we applied values
for the coarser time-scale in each data source to each 1-minute observa-
tion. This means that all 1-minute observations within a single day re-
ceived the same value for a ‘daily’ predictor, such as the Lti or rainfall.



Table 1
Predictor variables used inmodelling of light levels in the Submerged Vegetation LightModel (SVLM). BoM: the Australian Bureau ofMeteorology. Detailed descriptions and reasoning for
each predictor are in Supplementary S1.

Predictor Data source Observed range Units Temporal resolution

Boating intensity Proxy used (Leisure time indexa; adjusted) 1–23 Categorical Daily
Cloud cover BoM (Coolangatta stationb) 0–8 Okta 1 min
Depth Several - In-situ measurements and calculations based on offsets from Tide

height
0–3.43 m 1 min

Distance from ocean
inlet

Straight-line distance in metres, measured using Google Earth 1888–15,110 m Static

Rainfall (3-day
cumulative)

BoM (Seaway station) 0–300 mm Daily

Site aspect Direction from centre of channel towards near-shore logger location,
perpendicular to shoreline

0–325 Degrees Static

Solar dose Calculated from BoM daily Solar exposure using sine wave conversion 0.000–0.0059 MJ/m2/min 1 min
Tide direction Calculated from tidal data Decreasing, slack low, increasing,

slack high
Categorical 1 min

Week Calculated Julian week in sequence through year
(values 1 to 53, starting 1 January)

1–53 Integer 1 week

Wind direction BoM (Seaway station) 0–359 Degrees 1 min
Wind speed BoM (Seaway station) 0–85 km/h 1 min

a Adapted from Leon and Warnken (2008).
b Coolangatta weather station, at ~16 km (linear) from the Gold Coast Broadwater is the closest station that measures cloud cover.
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The temporal resolution listed in Table 1 is representative of the value
applied to each 1-minute observation in themodel. Additional variables
(e.g. suspended solids and sediment grain size) are also likely to affect
light availability (Adams et al., 2016) butwere not included in this anal-
ysis due to an absence of remotely available or calculable data at appro-
priate resolutions.

We used a generalized boosted regression modelling (GBM) tech-
nique, with the gbm package in R (Greenwell et al., 2019) to analyse
these data and develop predictive models. These analyses use an itera-
tivemachine learning process to train amodel to predict a response var-
iable (in this case PAR) based on conditions related to the influence of a
set of predictor variables (Elith and Leathwick, 2017). A training dataset
is used to determine the influence of various predictor variables on the
response variable by randomly permuting each predictor variable and
computing the associated reduction in predictive performance. We
tested prediction accuracy in two ways:

1. against a randomised subset of the training dataset with 80% of the
training dataset assigned to training the model and 20% to estimate
squared error loss in each iteration (Elith and Leathwick, 2017).
This enables the model to improve through an iterative process and
identify the iteration with the best predictive accuracy, and;

2. against an independent dataset that was not provided to the model.

If training data are sufficiently representative of a broad range of
conditions, the model is able to learn how each predictor influences
the response and apply these influences to estimate values for new
datasets, making this the ideal technique for the purpose. We note
that GBMmodels are robust tomulticollinearity due to the iterative pro-
cess inwhichGBMbuilds regression trees, ensuring that redundant var-
iables are never selected (Elith and Leathwick, 2017). There is thus no
benefit in subjectively deciding a-priori whether variables should be ex-
cluded based on correlations between variables. GBMs handle interac-
tions between predictors well and are capable of handling missing
data in predictor variables. Therefore, while some of our predictors in-
teract with one another (e.g. wind direction and site aspect), the influ-
ence that each exerts on measured light intensities justifies inclusion
of all.

Data pre-processing involved exclusion of night-time periods (to
precise sunrise-sunset times for each day from local data provided by
BoM) to allow the relative influence of predictors to be assessed appro-
priately, undiluted by night-time comparisons for which they have no
effect. This resulted in a daytime light intensity dataset containing
386,928 light observations at 1-minute intervals from 268 dates. Prior
to training the model, the full dataset was split into separate training
4

and testing datasets using random assignment of whole days. Following
model training, the testing dataset was used as the independent data to
test the accuracy of the model.

The SVLMwas processed at the 1-minute resolution, ensuring max-
imum training data were used and that the effects of short-term influ-
ences were captured within the model. Due to limitations with some
data sources, this may have introduced some temporal mismatches be-
tween the predictor and in-situ observations, especially for factors
where temporal and spatial differences exist between logger location
and the place of predictor measurement. For example, cloud cover
was measured at the nearest available weather station (25–40 km
away from nearest and farthest logger locations). Similarly, some
other variables (e.g. boating, cumulative 3-day rainfall) were only avail-
able as daily estimates or proxies. We expected short-term temporal
mismatches in predictor variables to balance over longer periods,
minimising overall error at daily resolution and longer. Thus, we
assessed model accuracy at multiple temporal resolutions relevant to
management decisions. We summed all observations within a day to
calculate daily doses for both observations and predictions (separately),
converting units from μmol/m2/s to mol/m2/d) using:

mol=m2=d ¼ sum daily μmol=m2=s⁎60
� �� �

=1, 000, 000

Optimummodel input parameters were determined using the gbm.
tune function. This function tests the accuracy of the model against dif-
ferent combinations of input parameters that can bedefined by the user.
These include variations in the number of trees, minimum observations
per node, training proportion, bag fraction, tree complexity, cross-
validation folds and more (Table S1). We tested 24 different combina-
tions of the parameters and used the set of parameters that returned
the lowest root-mean-square error (RMSE) as our primary model
(Table S1).

A gbmobjectwas created using the training dataset and then used to
predict light intensity from predictor variables in the independent test-
ing dataset. We assessed model accuracy using linear regression of ob-
served vs predicted light intensity at both the 1 min and daily
resolutions, assessing R2 and RMSE for model accuracy. We also plotted
daily values in time-series to visualise accuracy over time. We addition-
ally calculated a 14-day rolling average, the resolution commonly used
by managers to trigger management actions. Several light thresholds
for the management of seagrasses during sand management activities
have been recommended in Queensland (e.g. 10 & 6 mol/m2/d
(Chartrand et al., 2016)), and recent work in Gold Coast Zostera muelleri
meadows recommended a 4.5 mol/m2/d threshold (Pearson et al.,
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2020). We use these thresholds as visual guides when plotting daily
dose predictions to demonstrate accuracy against specific regionally rel-
evant thresholds. We then compared predictions and observations
against 11 pre-defined real and hypothetical management thresholds:
integer values between 1 and 10 mol/m2/d; as well as the locally de-
fined 4.5 mol/m2/d threshold. We calculated the number of times the
model predicted light on the correct side of each threshold (i.e.
matching whether the observed value was above or below) as well as
the number of false low (incorrect prediction under threshold) and
false high (incorrect prediction above threshold) predictions.

2.3. Sensitivity analyses

We tested sensitivity to training data quantity and spatiotemporal
coverage by separating the full dataset into training and an independent
testing datasets by several means. To test the effect of data quantity on
model accuracy, we split the full dataset using nine proportional levels,
whereby X% of days were assigned to training and the remaining Y%
Fig. 2. Accuracy summaries for model K1 across three temporal scales. Top panel shows linear m
dose (mol/m2/d); c) 14-day rolling average(mol/m2/d); d) shows time-series plot of test data
average. Model K1 comparison between predicted and observed values by date at two tempo
magnitude of differences between observed and predicted daily doses. Red lines show pred
pale grey line is observed values across the whole dataset. Dashed horizontal grey lines re
recommended for seagrass management on the Gold Coast and in other areas. (For interpre
version of this article.)

5

were used to test the accuracy of predictions at the daily and sub-
daily level. In other machine learning analyses it is common that 80%
of data is assigned to training a model (Alexandropoulos et al., 2019),
thus high accuracy at any level below 80% training data would imply
the model is robust. The nine levels had 75%, 50%, 40%, 30%, 25%, 10%,
7.5%, 5%, and 3% of days assigned to training the model and were re-
peated between 3 and 6 times for each level and number of predictors.
These data were assigned randomly, with the intention of testing accu-
racywithin the temporal range of the training data. The bestmodel was
designated as the most accurate at predicting against management
thresholds and was repeated 5 times, using different randomised sepa-
ration of training & testing datasets to test the replicability of themodel.
The full dataset (combined training and testing)was required to test ac-
curacy against management relevant thresholds, given the need to cal-
culate 14-day rolling averages for this analysis. Typical outputs from
these five replicates are presented in this document, with detailed out-
puts of representative models across all levels provided in S2
(Tables S2.1, S2.2; Figs. S2.4-S2.12). Spatial sensitivity and minimum
odels comparing observed to predicted values at a) 1-minute scale (μmol/m2/s); b) daily
accuracy at daily level, and e) time-series plot of predicted and observed 14-day rolling
ral scales: a) daily, b) 14-day rolling average. In d) vertical, coloured lines represent the
ictions that are lower than observation and blue show predictions that are higher. Solid
present several light thresholds (4.5, 6, 10 mol/m2/d) discussed in text that have been
tation of the references to colour in this figure legend, the reader is referred to the web
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data requirements were assessed by plotting the error between ob-
served and predicted for each site individually against the number of
in-situ observations collected at that site.

3. Results

3.1. In-water light observations

Light intensity at the seagrass canopy varied considerably between
dates and locations (Figs. 2, S2.1). Light levels through the Dec-Feb pe-
riod were the highest, reaching a peak of 14.3 mol/m2/d, whereas
other periods/locations recorded near zero light intensities at times, es-
pecially at the northern extent (Figs. 2, S2.1).

3.2. Key influencers of light reaching SAV

The predictors that had the strongest effect on light availability were
those related to solar intensity, time-of-year, and some physical charac-
teristics of the location. Solar dose was the predictor that consistently
returned the highest influence in themodel (41.6±1.1%),with distance
fromocean the nextmost influential (32.5±1.8%; Fig. 3). Depth, site as-
pect, and week were the only other predictors providing more than 5%
influence on the model, each of these three accounting for between 6
and 9% (Fig. 3). Due to the low influence of several predictors (<2%),
we also trained a set of models using only the top five ranked predictors
(hereafter, 5 predictor models).

3.3. Predicting light levels from remote data

Very strong predictive accuracy was observed from almost all
models. Model accuracy was always higher when assessed at coarser
temporal scales (i.e. accuracy at 1 min < daily <14-day rolling average)
andwith a greater proportion of data used inmodel training. For exam-
ple, the best model, designated K1, used all 11 predictors and showed a
strong linear relationship between predicted and observed values at 1-
minute resolution (r2 = 0.93; RSE= 41.3 μmol/m2/s or 6.9% of range in
observations), which improved when data were aggregated at coarser
temporal resolutions (daily r2 = 0.99, RSE = 0.75 mol/m2/d; 14-day
r2 = 1.0; RSE= 0.136 mol/m2/d; Fig. 2). The K1 model returned an av-
erage 14-day rolling average accuracy of 99.3% (range 98.2 to 100.0%)
when comparing whether predictions were correctly above or below
each of the 11 designated thresholds. Five replications using the same
model parameters (75% training data and 11 predictors), but different
random separation into training/testing datasets, returned very similar
results with an overall mean accuracy across 55 threshold tests (11
thresholds, 5 model replications) of 99% (range for individual thresh-
olds within all models: 94.3 to 100%; Table S2.1).

Two-week rolling average prediction accuracywas consistently very
high (>96%) for all models trained on data proportions higher than 25%
0 5 10 15

Solar Dose
Distance from ocean

Depth
Site aspect

Week-of-year
Tide Direc�on
Wind Direc�on

Cloud cover
Rain (3 day sum)

Wind Speed
Leisure Time Index

Pr

Fig. 3. The relative influence of each predictor on light observed (mean percentage+ SE). Value
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(>86,011 observations; Fig. 4a). Accuracy reduced and became less con-
sistent at training data levels between 3 and 10% (10,493–39,216 obser-
vations; Fig. 4a). In general, the 11 predictor models performed
marginally, but not significantly, better than the 5 predictor models
(Fig. 4), but with some exceptions at lower training data volumes. For
example, at 7.5 and 10% training data volumes, the 11 predictor models
appear to have beenmuchmore variable, andwith lower average accu-
racy than the5 predictormodels. However, in both cases thiswas driven
by inaccuracy in a single threshold level (1 mol/m2/d), for which one
model at each training volume recorded 0% accuracy.

3.4. Quantifying spatial variation in comparison to amount of
monitoring data

Accuracy across separate locations was high, with mean within-site
error (as difference between observed and predicted at 1-minute reso-
lution) below 2.5% of the site-range in almost all cases (Figs. 1, S2.2).
Only two locations, both with low monitoring effort returned error
values higher than 5% error (red circles in Fig. 1; S2.2). One of these lo-
cations was monitored for only 49 min and, in the K1 model, returned
differences between observed and predicted of 27 ± 7.6% of the ob-
served value (mean ± SE). The other, monitored for 2098 daylight mi-
nutes, returned mean differences of 15 ± 0.8% of the observed value.
However, 24 other short-term deployments (<1 week) returned very
low error rates of <5%, even in deployments that were in the water
for less than 2 h.

4. Discussion

We present a machine learning model that accurately predicts the
light reaching SAV in the Gold Coast Broadwater, Australia. The SVLM
was able to apply ‘learned’ information from trends identified in obser-
vation data to independent data and predict light intensity with very
high accuracy, even with very low training data proportions compared
to needs for other similar techniques (e.g. commonly 80%;
Alexandropoulos et al., 2019). Accuracy was good at the 1-minute
level, but improved with increasing temporal scale of assessment, as
data were aggregated into larger time units (Fig. 2). This culminated
in the best models achieving a 14-day rolling average accuracy of
>99% against 11 real and potential management thresholds. Accuracy
was also high across spatially separate locations (<5% mean error at
1-minute level), except at two locations (15 and 28%error, respectively)
that were both monitored for very short periods (Figs. 1, S2.2). Despite
these two locations returning the highest error rates, 24 other short-
term deployments (<1 week) returned very high accuracies (all with
errors <5%). This allows some inferences into minimum training data
requirements for future applications. We found that solar dose is the
major influencer in the SVLM, but that several other factors (distance
from ocean; depth; site aspect; and week) also significantly influence
20 25 30 35 40 45
edictor influence (%)

s from 5 replications of 11-predictor models with 75% of data assigned to training dataset.



Fig. 4.Accuracy of models (mean± SE) in correctly predicting whether the 14-day rolling
average was above or below 11 hypothetical management thresholds.a) Models with
varying training data volumes. X-axis represents the proportion of days in the full
dataset that were assigned to training the model.. b): Accuracy at each threshold for
models trained on 75% of data with 11 (black; N = 5) and 5 predictors (red; N = 3).
Models using only five predictors were processed using only the predictors with the the
highest influence (mean > 5%) in the 11-predictor models: solar dose; distance to
ocean; week; depth; and site aspect. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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light reaching SAV.While very important for estimating PAR, changes in
solar dose alone are unlikely to be themajor cause of light-stress to sub-
merged vegetation, with many other potential factors more likely to
force light below needs (e.g. Dixon, 1999). Thus, despite comparatively
lower influence on observed light intensities, the other predictors in the
SVLMprovide valuable insight into the likely causes of light-stress in the
region.

Our analyses of data volume used to train the models suggests that
minimal, but strategic, in-water monitoring could be sufficient to train
a similarly accurate model in new areas if available predictor data are
sufficient to explain light. For example, the model returned better
than 90% accuracy in 5/6 replications when trained with only 7.5% of
days (24 days total) from the full 241-day dataset, and better than
96% when trained on data volumes ≥25% (Fig. 4). We believe this high
accuracy was only achievable because the in-water observations
spanned approximately 1-year, accounting for the full range of weeks
in the year, and because conditions in the other predictor data varied
considerably throughout this time, thus providing a sufficient variety
of training conditions. In cases where training data fails to encompass
the range of potential values in predictor data, the model can have
7

trouble extrapolating (Hooker, 2004). For example, the 1-year model
training data included a severe storm, suggesting that the SVLM should
therefore be sensitive to future storm events. Thus, we suggest that pe-
riodically collected in-water data that span approximately one full year
may be sufficient to train an accurate SVLM containing a time-of-year
predictor (i.e. week). While untested thus far, under these conditions,
and in the absence of large-scale changes to dynamicswithin the system
we may expect that predictions in future years will be similarly accu-
rate. But this would require some ongoing validation effort. It is feasible
that future changes to system dynamics (e.g. nearby land-use and cli-
mactic cycles)may trigger changes to how somepredictors (e.g. rainfall,
wind speed and direction) interact to affect how predictors impact light
penetration. This suggests that periodic model maintenance could ben-
efit longer-term predictive accuracy. For example, future monitoring
data collected at different times of year, or following major changes to
system dynamics, could be used to re-train the SVLM. Incorporating fu-
ture changes in predictor dynamics into themodel in this waymay pro-
vide ongoing confidence in the precision with which the SVLM can
predict light intensity.

While we do not suggest that the SLVM, trained on Gold Coast data,
is directly transferrable to other areas, the general approach in selecting
predictor variables and training a machine-learning model could be
used successfully in other locations. The most suitable predictors and
the relative influence of each predictor will likely vary in new areas
based on locally important factors. Places with strong pulsed influences
from river input or a range of specific point source inputs, for example,
may need to have these variables included for accurate model develop-
ment. Conversely, some of the local factors that are important for the
Gold Coast setting may not be as influential elsewhere. For example,
the distance-to-ocean predictor is unlikely to be useful in unsheltered
locations that are directly exposed to oceanic waters or situated much
farther inland, with little or no tidal influence. The success of our
model was also highly reliant on the availability of solar exposure data
for the location. The availability of similar measurements of incident
light for other locations will be critical in the successful application of
the modelling approach elsewhere.

4.1. Potential applications

Light stress represents a major threat to SAV globally (Orth et al.,
2006; O'Brien et al., 2018; Wu et al., 2018), so an ability to remotely
quantify PAR at the SAV canopy and identify the cause of excursions
below light thresholds can benefit the management and conservation
of these important ecosystems. Environmental pressure information is
essential in holistic ecosystem-based assessment and management
(Borja et al., 2008; Roca et al., 2016). Changes in light intensity can be
used for understanding changes in the condition and trend of SAV,
and so the SVLM could be applied in routine monitoring and assess-
ment. Near real-time remote estimation of light intensity can be used
to assess excursions below thresholds and can also identify SAV at risk
of light stress (sensu Collier et al., 2012a, Choice et al., 2014, Collier
et al., 2016a, Chartrand et al., 2018). The SVLM, can be applied as a spa-
tial tool, identifying habitat suitability and at-risk areas. This can provide
environmental managers with an early warning of potential declines in
SAV growth and survival, and to stratifymonitoring design, focussing on
areas with high levels of risk.

The SVLM may also allow forecasting of benthic PAR, alongside the
hindcasting capabilities we have demonstrated here. The consistency
in prediction accuracy shown by these models, alongside the ability to
forecast trends in many predictors (e.g. rainfall, wind, solar radiation),
means it is possible to now hindcast, but feasibly also forecast benthic
PAR/light conditions by estimating future values for each predictor
and applying them to the SVLM. This represents a potential future re-
search avenue with strong management implications.

The SVLM contributes to empoweringmanagers to employ an adap-
tive management plan that both minimises activity downtime and also
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protects SAV (Ventín et al., 2015; Maxwell et al., 2017). As an example,
the SVLM could be used in the implementation of dredge management
plans, or to mitigate other acute disturbances to the light environment.
Weuse dredging as an example because this activity is known to acutely
impact light penetration in a way that affects the health of SAV and is
routinely monitored and reported upon. We suggest that the SVLM
can be used to assess the effect of dredging and other human activities
and informmitigation strategies both before and during operation. Ref-
erence conditions provide a baseline or target against which to assess
the effects of activities, such as dredging, on light intensity. Reference
conditions can be based on historical (pre-activity) conditions, or refer-
ence sites, for example, each with their benefits and drawbacks (Borja
et al., 2012). The 14-day rolling average, for which the SVLM obtained
the best predictive accuracy, is often used to trigger sand-
management mitigation actions, making this resolution potentially the
mostmanagement-relevant level to comparewith reference conditions.
In the hypothetical scenario illustrated in Fig. 5, predictions accurately
match in-water observations before the activity begins, thus confirming
prediction accuracy and assessing pre-activity conditions against man-
agement thresholds. Once the activity starts, the in-water observation
values then drop below the management threshold, whereas the
SVLM predictions remain above. This would suggest that the activity is
having a negative effect on light penetration to the point of causing
light-stress.Managersmonitoring this area could respond to differences
between in-situ measurements and SVLM estimates during a dredging
activity, potentially triggering mitigation actions that improve light
levels to minimise SAV loss (e.g. Chartrand et al., 2016). Similarly,
where the SVLM predicts that light is below management thresholds
independent of the dredging activity, managers could infer that the ac-
tivity is unlikely to be having any additional impact on SAV. This type of
management support tool would allow for reference conditions to be
estimated directly at the affected location, rather than at an alternative
reference location that may unexpectedly respond differently to
changed conditions. Thus, the SVLM can directly support management
and conservation efforts while minimising cost and risk to personnel.

Furthermore, where multiple sites near SAV are to be dredged, the
dredge provider or management authority could use the SVLM to
model light conditions at all sites simultaneously, avoiding areas
where the activity is likely to lengthen light-stress, and instead focusing
effort in areas where dredging induced light reductions are unlikely to
breach thresholds. While it is likely that some level of in-situ measure-
ment of PARwould still be required for legislative compliance purposes,
Fig. 5. Hypothetical use of SVLM to quantify the effect of human activities. This example
compares light measured in-situ before the activity begins with the SVLM predictions to
both assess whether measure pre-activity conditions have provided suitable light and
confirm accuracy of SVLM. Then, an estimate of the effect of the activity can be
calculated by comparing expected ‘natural’ (SVLM) light values to those affected by the
activity in the exact same location (rather than an alternative reference location that
may not be exposed to identical conditions).

8

and for validating the accuracy of the SVLM during works, the ability to
extend the spatial range of benthic PAR assessments via the SVLM
would allow a much more robust management approach without the
requirement to have in-situ loggers located everywhere impacts may
occur. If it were also possible to forecast (at daily or longer time resolu-
tions) that natural light would be above or below a particular manage-
ment threshold in one place, then management activities could be
planned around timeframes expected to have minimal impact.

5. Conclusions

We use remotely available data to assess the influence of different
drivers on light levels (PAR), and to create a predictive model (the
SVLM) that allows remote estimation of the light environment from re-
motely available data. We were able to assess the influence of various
environmental and anthropogenic drivers on light reaching submerged
vegetation and develop a robust predictive model that accurately esti-
mates light levels with >99% accuracy at our study location. This pow-
erful technique could feasibly be applied anywhere that suitable
remote predictor data are available, providing the capacity to disentan-
gle the influence of different pressures on light availability, and to
hindcast or forecast light conditions in future assessments andmanage-
ment applications. Application of the SVLM technique could also mini-
mise reliance on in-water instruments (beyond collection of training
data and validation of models in new regions and sentinel sites during
management of activities), and provide time-series data and better spa-
tial coverage of benthic PAR for management applications.
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